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ABSTRACT

The Optical Reduction Programs have been written to obtain
the space trajectory of a re-entering body from measurements of
position on two photographic plates taken of a re-entry event
from two separate stations. The method of analysis follows
closely that developed by Whipple and Jacchial. The Programs are
a modification for the Lincoln Laboratory TO94 computer of a
program originally written at the Harvard Observatory for
reduction of meteor trails. The computation is divided into two
progreams:

1. The Plate Calibration Program calibrates the plate by
using coordinates and plate measurements of known stars as
reference points.

2. The Optical Trajectory Program camputes range, height,
time, direction cosines, and distance along the trail fram the
neesured points on the trail.

This paper discusses these two programs in detail, including
program listings, flow charts, and directions for running the
programs. The mathematical background and the experimental method
for obtaining the input data are also discussed.
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GLOSSARY

Sky and Plate Coordinates

Symbol Definition

a, A Altitude and azimuth as referred to the
local horizontal

5, H Declination and hour eangle as referred to
the equator

0, a Declination and right ascension as referred
to the equator

8, A Celestial latitude and longitude as referred
to the ecliptic

E, 7, ¢ Direction cosines in the altitude-azimuth
system

1; my; n Direction cosines in the declination-hour
angle system

A, u, v Direction cosines in the declination-right
ascension system

T Vernal equinox or first point of Aries

€ Obliquity of the ecliptic (23 1/2°)

E, T Standard rectangular plate coordinates with
origin at the optical plate center

X T Measured rectilinear coordinates on the
photographic plate

o Angular distance from the optical plate center

a&X, AY Corrections to measured rectilinear coordinates
on the photographic plate

Xx,Xy,Xz

Yx,Y ’Yz Precession direction cosines for the declination -

Y right ascension system
Zx,Zy,Zz

vii




Uy, U Proper motion in right ascension and declination

per year
a,b,c,d Plate constants in four constant solution
A,B,C,D Inverse plate constants in four constant solution
a_,a ,8 ,b ,b ,b Plate constants in six constant solution
Xy 2 Xy 2
ag,a ’bg »b ,cg e Inverse plate constants in the six constant
1 n n solution
Time and Terrestrial Coordinates
S.T. or @ Sidereal time at observer
9G Sidereal time at Greenwich
90 Sidereal time at 0000 Greenwich time at Greenwich
A8 Correction to sidereal time Trequired since a
soler day 1s longer than a sidereal day
U.T. Universal or Greenwich time
L Terrestrial longitude
¢ Terrestrial latitude (geographic)
]
¢ Terrestrial latitude (geocentric)
o] Radius of earth at sea level at observer's
latitude
R Radius of earth at observer
'3 AR’ n AB’ 4 AB Direction cosines in equatorial system of the
vector from station A to station B
3 AB *Mag ,t AB Direction cosines in the equatorial system of
o] o] o] the vector from station A to station B at
sidereal time equal to zero at station A
Az,uz na Direction cosines in the equatorial system

of the zenithal point of the observer

viii
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q

Other Symbols

Subscripts

Lens focal length
Length of the trail in angular measure

Angle between the two meteor trails seen from
the two stations

Distance from station A to the plane determined
by the re-entry object and station B

Range fram station A to the point i on the
re-entry object

Height above mean sea level

Distance along the trail from an arbitrary zero
point

Period of revolution of shutter
Number of occultations of shutter per revolution
Relative time fram arbitrary zero time

Angle that blade edge makes with dash

Coordinates of stars
Coordinates of plate center

Center of rotating shutter

Double letter subseripts are used for points along the trail. The first
letter is always A (for station A) or B (for station B)

:

b

A point on the trail - any shutter break or segment

Beginning of photographic trail

End of photographic trail




E, M
X Y

Computer Symbol

TITLE

N

XX, XY, XZ
YX,YY,YZ

ZX,2Y,27

ACHR, ACMIN,ACSEC

DCDEG,DCMIN,DCSEC

XC,YC

M

DTH

AC

Pole of trail considered as a part of great circle

Greenwich

Refer to t and 7 standard plate axes

Refer to X and Y axes on plate

Radiant of the event
Plate Calibration Program

Math Symbol

XXX,
oYY,

20252,

Definition

Title of event - any T2
characters desired

Number of sets of precession
constants

Number of stars

Precession constants

Right ascension of plate
center in hours, minutes,
seconds

Declination of plate center in
degrees, minutes, seconds

Measured coordinates of plate
center

Number of precession set to
use with plate center or star

Correction in sidereal time to
be used with non-tracking cemeras

Right ascension of plate center
in radians

Declination of plate center in
radians




EIC,EMC, ENC

EICP,EMCP,ENCP

ELETA,EMETA, ENETA

ELEXT,EMEXT

AHR, AMIN, ASEC

A

DDEG , DMIN, DSEC

EL,EM,EN

COSSIG

EXI,ETA

ACAP, BCAP, CCAP, DCAP,ECAP

DX, DY

CF,SF

A v
eMere

A v
eMe?e

n,u’n)u n

I ]
e,b,c,d
A,B’C,D,-A

X, AY

cos A9, sin A6

xi

Direction cosines of unprecessed
plate center in declination
right ascension system

Direction cosines of precessed
plate center in declination
right ascension system

Direction cosines of 7 axis
Direction cosines of E axis

Right ascension of star in hours,
minutes, seconds

Right ascension of star in
radians

Declination of star in
degrees, minutes, seconds

Declination of star in radians

Measured coordinates of star

Unprecessed direction cosines of

star in declination-right
ascension system

Precessed direction cosines of
star in declination-right
ascension system

Angular distance of star from
plate center

Standard plate coordinates
of star

Plate constants from four
constant solution

Inverse plate constants from
four constant solution

Residuals in X and Y

Cosine and sine of A6




EIC,EMC,ENC
EIEX,EMEX, ENEX

ELET,EMET,ENET

SIXCON

SEXI2
SEXTET
SEXT
SEXEXTI
SETA2
SETA

SEXETA

SEYETA
SEY

A
B

ASEXT, BSEXT, CSEXT

ASETA,BSETA,CSETA

e?e? ¢ Corrected (for A8) direction

At ooyt cosines of the plate center
g 2 M2 3 and the standard axes in the
% 4 x W declination-right ascension
n 2P Ty system

Coefficient matrix

ag,b ,cg
§ Inverse plate constants

a_,b_,c for six constant solution

xii




Optical Trajectory Program

TITLE .
TITLE 1 (1) o
TITIE 1 (2) -
Constants
CON P/N
DTRAD m/180
2 £
PI mw

Trail Equation

EN,N n
SLOPE m
SUMX ZX
SuMx2 er
SUMXY Xy
SUMY Zy
p ('} X,
¢ Y

xiii

Title of event - any 72
characters desired

Title of station A

Title of station B

Period of revolution/mumber
of occultations per revolution

Conversion of degrees to
radians

Focal length of camera squared

3.141592654

Number of points used to
get trail equation

Slope of line found by trail
equation

Sum of X readings
Sum of X readings squared

Sum of the product of the X
and Y readings

Sum of the Y readings
First X reading on trail

Average Y reading on trail




YBAR

ZTRAIL

Relative Coordinates

ELEV

ELORH
ELONM

ELONS

ELON

ELZ,EMZ,ENZ

EXTABO, ETAABO, ZETAAB

EXTAB, ETAAB, ZETAAB

GTHR, GTM, GTS

PHD, PHM, PHS

=

>l

|

xiv

Difference between actuel
reading of point and Xb,
Yﬁ for points on trail

Average value of X reading
Average value of Y reading

Y intercept of trail equation

Elevation of station above
me&n sea level

Geographic longitude of
station in hours, minutes,
and seconds respectively

Geographic longitude of
station in hours

Direction cosines of zenith
of station

Direction cosines of vector
from station A to station B
at sidereal time zero at
station A.and at the time of
the event, respectively

Direction cosines of vector
from station A to station B
at time of event

Given event Greenwich time
in hours, minutes, and seconds

Geographic latitude of
station in degrees, minutes,
and seconds

Geographic latitude of
station in radians




CPHI,SPHI cos @, sin ¢

PHIP, PHIFD ¢

RAB Ryp
RHO P
THET@$H, THETYM, THET@S 6,
DTHETS 00
THET, THETA )

CTH, STH cos 6, sin €
uT -

DL AL

CDL cos AL
SDL sin AL

Calculation of Pole and Radiant

CAX, CBX,CCX 8 b ,c.
C cc a ,b ,c
AY,CBY,CCY FLLH
EXTBAR,ETABAR 13

X X

Y

Cosine and sine of latitude

Geocentric latitude of
station in radians and
degrees respectively

Range from station A to
station B

Earth's radius at the
station

Sidereal time at 0000 U.T.
at Greenwich for the date
of the event in hours,
minutes, and seconds

Correction in sidereal
time (seconds)

Sidereel time in degrees
or radians

Cosine and sine of theta
Universal time of event

Difference in longitudes of
the two stations

Cosine and sine of AL

Inverse plate constants for
six constant solution (or
four constant solution
expanded to give six numbers)

Standard plate coordinates
of a point

Measured reading of X on plate

Computed Y of point read at X




EIC,EMC,ENC

ELETA,EMETA,ENETA

ELEXT,EMEXT

EL,EM,EN

ELP, EMP,ENP

DLONG

SINL

SR

EIR,EMR,ENR

Celculation of Ranges,
Xp
YP

C0SZ, COSZ1

PEL, PEM, PEN

Kc’pc’vc
’pﬂ’vﬂ
Ag b

Ayu,¥

NpHp'p

sin 1

sin

e

Direction cosines of plate
center declination-right
ascension system

Direction cosines of n axis
declination-right ascension
system

Direction cosines of T axis
declination-right ascension
system

Direction cosines of any
point on trail declination-
right ascension system

Direction cosines of pole
declination-right ascension
system

Trail length in degrees

Sine of trail length

Sine of angle of intersection
between the two trails as
seen in the sky from stations
A and B

Direction cosines of the
radiant

Heights, and Distances

Ay, ¥

X reading of any point

Corresponding Y camputed
for this X point

Cosine of zenith distance
of any point

Distance along the trail
from an arbitrary zero

Direction cosines of each
point in declination-right
ascension system




HEIGHT, H H

DH on
n h

RANGE, R R

NUM -
NDASH, ENDASH —
NWT -
EXIP,ETAP,ZETAP --

Calculation of relative time

Y
XQ)YQ xq’ q
XC,YC xc’Yc
DX,DY -
XMEAS X
DYTR -
MEGA w
OCCULT N

P P

xvii

Height above mean sea level
for the point

Height correction

Height above the tangent
plane

Range from the station to
the point

Number of dashes

Number of the dash
(numbering from 1-NUM)

Weight or reliability of
dash

Direction components of

point declination-right
ascension system

Observed coordinates of the
center of rotation of the
shutter

Observed coordinates of the
projection center

Differences in two centers
X reading of any point

Difference between Y

computed and Y of rotation
center

Angle that blade makes with
dash

Number of occultations per
revolution

Period of revolution




SIGN, IF PLUS

IFEXT

ELAZ,EMAZ, ENAZ

E,n,t

xviii

Code describing direction
of revolution of shutter

Code if cards are
desired

Direction cosines of point
in the altitude-azimuth
system




I. INTRODUCTION

The optical reduction programs for the 7094 computer have been written
to compute the space trajectory of the re-entering bodies of the Trail-
blazer experiments fired from Wallops Island, Virginia. When a body
re-enters the atmosphere it is heated and may become luminous; thus, it may
be photographed. Trails are recorded photographically from several stations
by Lincoln Laboratory and the NASA and the photographs are available for
analysis. The programs discussed in this report compute positions along
the re-entry trail using known stars as calibrations. Relative time may be
introduced by the use of chopping shutters on one or more cameras, so that
breaks at regular time intervals are produced along the trail.

The mathematical background of the reduction procedure is discussed
in Section IT and the experimental techniques in Section III. The programs
themselves are documented in Sections IV and V. The astrometric reduction
is modeled after the technique discussed by Whipple and Jacchia; and McCroskya.
The progreams are adapted from programs written by Dr. McCrosky's group at the
Harvard Observatory for meteor analysis.

A camera usually maps the celestial sphere onto a flat focal plane.

In the case of the Super-Schmidt Cemeras, the focal plane is curved and
the f£ilm must be copied by projection onto a flat plate for analysis. All
measurements for this reduction are made on the flat plates. Positions on
the plate are measured as discussed in Section III.

The angular direction to the reference stars and the vehicle trail
are determined with respect to each camera station, and from these directions
the angular bearing of measured points along the trail can be found. The
trails from the two stations may look quite different since they are
photographed at different distances and angles. Also, clouds sametimes
obscure parts of the trail. Thus the beginning and end points of the
trails recorded from the two stations may not be identical. No attempt
has been made to synchronize the chopping shutters in the Wallops Island

camera systems.




Since the Trailblazer vehicles are axially symmetric, the only force
acting to change the direction of the re-entry from a straight line is the
gravity effect on a freely falling body. This effect is generally small
over the short time of the event and the deviation from a straight line
trajectory, if any, would be found near the end of the trail. Also the
re-entry body of the Treailblazer system is fired downward and re-enters
about 10-12° from the vertical so that gravity acts mainly along the
vehicle trajectory. Thus the re-entry trail is usually a straight line
on the plate. If the trail is curved, it must be broken up into straight
line segments and the program must be run separately for each straight line
part.

From the known positions of stars near the trail at the time of the
event, a calibration is performed on each plate; from the results of this
calibration, the angular position of points along the trail may be
determined for each plate. Since the trall appears as a straight line, the
position vectors of points along the trail as seen from the camera station
must determine a unique plane. The re-entry must lie on the intersection of
the two planes determined from a pair of photographs taken at separate
stations. The distance from the camera site to the point on the line of
intersection may be computed individually for each point. Therefore, a
set of slant ranges Ri for points along the trail may be found for each
plate. Helght , direction cosines, and relative distance along the trail may
then be computed for each measured point along the trail. If the pia.tes
were obtained from a camera with a chopping shutter, relative time may be
camputed for each dash.

In general a unique time for any given point on the plate can not be
found. Also, no exact correlation exists between points on the two trails.
If a coomon point such as a flare can be identified on both plates, the
points may be considered to occur at the same time. The height of the
point computed from both stations should be identical (this will serve
as a check on the height computations). In this case, also, the exact




sidereal time of the flare can be camputed; however, since in general flares
need not occur, this computation of sidereal time is not included in the
present progrem. In the Project PRESS coded shutters have been built
into the cameras and the chopping shutters have been synchronized so that
absolute time can be recorded and an analysis performed using unique time
points from two or more stations. The Super-Schmidt Cameras used in the
Trailblazer program are not equipped to record absolute time since suiteble
coded shutters can not be easily installed. It should be noted that the
re-entry events of Project PRESS are much longer than those of the Trail-
blazer series; thus the design and use of absolute timing equipment presents
much less difficulty in Project PRESS.

The present set of programs is designed to compute the position of
the body, i.e. height, range, and direction cosines of each point along
the trail. If the trail is chopped, relative times can be computed for
the dashes; relative distances along the trail from an arbitrary point on
the trail are also computed. These programs do not compute velocity. If
the distance along the trail as a function of time is known, various methods
of computing velocity might be used. Harvard has obtained good results in
meteor work with the equation

D=a+bt+cexp (kt)

vhere D is the distance along the trail; t is the elapsed time from an
arbitrary reference point on the trail and a, b, ¢ and k are camputed
constants. However, this fit did not appear particularly suitable for the
Trailblazer work. At present velocity is computed from the results of the
optical trajectory program by hand computation. Since this method is not
yet suitable for machine calculation, the camputation of velocity has been
omitted from the present program.




II. MATHEMATICAL BACKGROUND
A. Astronomical Coordinate Systems

When the stars are observed from a point on earth they appear to lie
on the surface of a sphere with the observer at its center. Although the
eye can not determine the distance to the stars, an estimate of the angles
subtended at the observer by any pair of stars can easily be made. These
directions are defined in terms of the positions on the surface of a
sphere - the celestial sphere - in which the straight lines Jjolning the
observer to the stars intersect this surface. The axis of the earth pierces
the sphere at two points called "the celestial poles". The radius of the
celestial sphere is considered arbitrarily large.

The position of any point on the surface of a sphere may be completely
specified by reference to two principal great circles on the sphere, or by
one great circle and a point on that great circle. Thus a point on the
surface of the earth is completely specified by its latitude, measured from
the equator, and its longitude, measured east or west from Greenwich.
Several methods of defining position on the celestial sphere are in common

use.

1. Spherical Coordinate Systems

a. The Altitude-Azimuth System

let O, the observer on the surface of the earth, be the center of
the celestial sphere. Z, the zenith, is the point directly overhead
(defined by a plumb line) and the nadir is the point directly underfoot.
The plane through O perpendicular to the direction of the zenith is called
the plane of the horizon and, as shown in Fig. la, cuts the celestial
sphere in the great circle NAS dividing the celestial sphere into two
hemispheres, the upper being visible and the lower being hidden by the
earth itself. A vertical circle is & great circle passing through the
zenith and the nadir.




Let X be the position of a star on the celestial sphere at a given
moment. The angle Aak or the great circle arc AX is called the altitude, a,
of the star. To completely specify the position of a point on the
celestial sphere the particular vertical circle on which it lies must be
specified. Iet OP be parallel to the earth's axis. If the observer is in
a northern latitude the position P is called the north celestial pole. The
vertical circle through the pole, ZPN in Fig. la,is defined as the principal
vertical; it is the circle traced on the celestial sphere by the observer's
meridian. The point where this circle cuts the horizon is called the north
point, N, of the horizon plane; the point S directly opposite N on the
horizon is the south point,

If the star is in the easterﬁ*part of the sphere, as is X in Fig. 1la,
the spherical angle Pék or the great circle arc NA is called the azimuth A;
if the star is in the western part of the sky, as is Y, the azimuth is the
angle P?Y which in this case is greater than 180°. Throughout this report
azimuth will always be measured from north in an easterly direction from
0-360°. Since the angle PGE in Pig. la equals the angle between the radius
of the earth which passes through the observer's position and the earth's
axis, Psé is seen to be equal to the co-latitude of the observer.

b. The Declination-Hour Angle System

The celestial equator is the great circle of the celestial sphere
perpendicular to the polar axis and is thus the great circle in which the
plane of the earth's equator cuts the celestial sphere, RWT in Fig. 1lb.

The celestial equator and the horizon intersect at two points E and W which
are each 90° from N and S and are called the east and west points.

Iet X be a star in the northern hemisphere. If PXD is the semi-great
circle through X and the pole P, the arc DX is defined as the declination
8 of X, i.e. its distance in degrees north (*) or south (-) of the celestial
equator. A great circle passing through the pole of the celestial sphere

*If the observer faces north, the west is on his left and the east on his
right.




is called a meridian or an hour circle. The second great circle required
for complete specification of the star's position in the declination-hour
angle system is taken as the observer's meridian (i.e. that meridian
passing through the zenith) PZRSQ (L) in Fig. 1b. At any moment the
position of X is specified by the angle at the pole between the observer's
meridian and the meridian PXQ through the star at that time. This angle
ng or Zﬁk or the arc RD is called the hour angle H and is measured from
the observer's meridian westward 0° -360° or Oh -2Lh.

c¢. The Declination-Right Ascension System

In the hour angle-declination system only one coordinate, the
declination, remains constant as the earth rotates whereas the hour angle
increases uniformly from Oh -2kh during a day. It is usually more
convenient to define the second coordinate relative to a fixed point on
the equator (although all the stars appear to change position during the
daily rotation of the earth, their relative posifions with respect to one
another remain unchangedover long periods of time). The point chosen as
standard is the vernal equinox or the first point of Aries denoted by 7.
Then the arc 7D or angle Tﬁk is called the right ascension of star X,
denoted by @, and is measured eastward from Oh -2kh (or from O -360°)
Fig. 1b. Note: right ascension is measured in the opposite direction
to hour angle.

d. The Celestial Latitude - Longitude System

The earth is a planet rotating around the sun in an elliptical orbit
with the sun at one focus with a period of revolution of approximately one
year. During the year, as observed from earth, the sun appears to make a
complete circuit of the sky against the star background. The plane of this
orbit is called_the plane of the ecliptic and the great circle in which
this plane cuts the celestial sphere is called the ecliptic. This plane
is found to be inclined at an angle of about 23 1/2° to the celestial




equator; this inclination is called the obliquity of the ecliptic, denoted
by €; € = M?R T Big. 2C.

Relative to the earth the sun appears to move on the surface of the
celestial sphere along the ecliptic in the direction Y™, and twice a year
its position on the celestial sphere coincides with the intersection of the
ecliptic with the celestial equator. This position 7 at which the sun's
declination changes from south to north is defined as the vernal equinox;
it is the reference point in the right ascension-declination system.

A fourth set of coordinates can be derived using the ecliptic as a
fundamental great circle and the vernal equinox 7 as a principal reference
point. In Fig. lc let K be the pole of the ecliptic and KXA a great
circle arc passing through star X meeting the ecliptic in A. The arc 7A
measured from T to A along the ecliptic in the direction of the sun's
annual motion, i.e. eastward, is called its celestial longitude A and is
measured fram O -360°. The arc AX is called the celestial latitude B and
is measured north or south of the ecliptic.

e. Notes on Coordinate Systems

In the previous definitions, the center of the celestial sphere was
taken as the observer on the surface of the earth. However, since the
stars are at distances which are almost infinitely large as compared with
the dimensions of the earth, no appreciable error results fram taking the
center of the earth as the center of the celestial sphere; this convention
will be used in this report when dealing with the star background. Although
our figures have been drawn for the northern hemisphere, similar figures
apply for the southern and the definitions of the coordinate systems apply
to both hemispheres. For an observer exactly at the pole the definitions

of azimuth and meridian break down; thus in the following study it will be
assumed that the observer is not at a pole.

2. Rectangular Coordinate Systems

In the preceding discussion, points on the celestial sphere were
defined in temms of spherical coordinates; however, in most of the following




work it is much more convenient to use a rectangular reference system. A
right handed coordinate system is chosen in which the coordinates x, y, z
are measured along three perpendicular axes such that the rotation of the
x axis into the y axis around the z axis is accaomplished by the right hand
rule; the origin of the system is taken as the observer or the earth's
center (see above). The position of a star on the celestial sphere may

be represented in vector form by

r = rxT + ryj + rzf (1)

vhere 1, J, and k are unit vectors in the x, y, z directions respectively,
and Tes ry and r, are the projections of T on the respective axes. The
cosines of the angles between the positive x, y, and z axes and the vector
T measured in the direction from the axis toward r are called the direction
cosines of r. We will express all coordinates in terms of direction

cosines; in this way the magnitude of T will not appear and only the directions
will be used.

8. The Altitude-Azimuth System

The horizon will be taken as the xy pla.fxe, the positive x axis will
pass through the east point of the horizon, the positive y axis through
the north point, and the positive z axis through the zenith.

Iet S in Fig. 2a be any star on the celestial sphere with altitude
a and azimuth A. Then using &, 7, ¢ to represent direction cosines in
the x, y, z directions, respectively

E= cosasinA
M= cosacosA
= gina (2)

b. The Declination-Hour Angle System

The plane of the equator will be taken as the xy plane, the positive
x axis will pass through the west point on the equator, the positive y
axis through the intersection of the observer's meridian and the equator,




and the positive z axis through the celestial north pole. Thus,in the form
of direction cosines £, m, n (Fig. 2b)

£ = cos 0 sin H
m = cos 0 cos H
n = sin 0. (3)

c. The Declination-Right Ascension System

The plane of the equator will be taken as the xy plane; the positive
x axis will pass through the vernal equinox 7, the positive y axis through
the point whose right ascension is +90°, and the positive z axis through
the celestial north pole. Thus (Fig. 2c)

A =cos 0 cos &
# = cos 0 sin @
V=gin 0 (&)

where A, K, V are direction cosines in the x, y, z directions respectively.
B. Precession and Proper Motion

Although the phenomenon of precession was observed by Hipparchus over
2000 years ago, the first correct dynamical explanation was given by Newton.
As is well known the earth has the shape of an oblate spheroid rather than
that of a sphere due to an equatorial bulge produced by its rotation about
its polar axis; this bulge is inclined to the plane of the ecliptic by about
23 1/2°. Thus the solar and lunar attractions produce moments about the
center. Since the earth is spinning rapidly on its axis much like a top,
instead of turning the equatorial plane into coincidence with the ecliptic
plane, the result of these attractive forces is to cause the axis of the
earth to precess about the axis of the ecliptic. Thus the earth's axis
has a conical motion about the pole of the ecliptic so that the pole of
the equator describes a small circle about the ecliptic pole and the
vernal equinox moves backwards along the ecliptic.




The precession of the equinoxes causes the celestial longitude of a star
to increase at the rate of about 50 seconds of arc per year while the
celestial latitude shows no significant change. In our current study
we are interested primarily in the effect of precession on the right
ascension and declination of a star. When the coordinates of the star are
expressed in direction cosine form precession may be considered the result
of a rotation of the axes of the system with the origin unchanged. Iet us
consider the effect on & star S with direction cosines A, p, ¥ relative
to the original axes X, Y, Z of a rotation of these axes to & new position
X', Y', Z' where the angles between OX', OY', 0z2' and OX, 0Y, OZ are shown
in Table I where, for example, X, represents the angle between OX' and OZ.

TABLE I
oX oY 0Z
. :
oX Xx X& Xz
1
oY Yx Y& Yz
]
0Z 2, Zy Zz

A = A
X, xy X,
1 =
1] Yk Y& Yi i
o = Z, zy z, v (5)

The direction cosines A', p', V' giving the position of a star at any
given time can be easily obtained from the direction cosines A, u, V at a
standard equinox if the values of the transformation matrix are known.
Usually the right ascension and declination of & star are tabulated for the

equinox of 1950 in star catalogues; the values of the transformation matrix
can be fbund5.
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In 1718 Halley discovered that the position of certain bright stars had
changed eppreciably in relation to the general star background since the time
of Hipparchus. This suggested that these stars had a definite space velocity
relative to the sun and lay at finite distances fram the earth. The proper
motion of a star is defined as its apparent angular rate of motion on the
celestial sphere; it is usually measured in seconds of arc per year. The
proper motion is usually found by comparing precise observations of the
right ascension and declination of the star taken many years apart. The
star catalogues give the camponents u o » the proper motion in right ascension,
and 57 the proper motion in declination, per year or per century for
each star tabulated. Since the components of proper motion depend upon
the epoch and equinox for which they are measured, it is important to
apply proper motion corrections to the tabulated values of a and O for a
star before precession is applied. Thus, for example, suppose the right
ascension and declination of star S in 1935 referred to the equinox of
1950.0 is known and it is desired to coampute the coordinates of the star
in 1964 referred to the 1964.0 equinox. The simplest method is to first
apply proper motion corrections fram the tabulated values to find the position
of S in 1964 relative to the equinox of 1950.0 and then to precess the star
to the eqinox of 1964, A detailed discussion of precession and proper
motion may be found in Sna.rth.

Another effect of some interest is nutation which is a slight periodic
oscillation of the actual pole around the mean pole where the mean pole is
precessing uniformly. Since the effects of this nutation are small no
corrections for them appear in this work.

C. Time

The sidereal time at any place on earth at any instant is, by definition,
the hour angle of the vernal equinox at that instant. When 7 is on the




observer's meridian the sidereal time is O; when 7 is next on the observer's
meridian after 2kh of sidereal time or one complete revolution of the earth
about its axis, a sidereal day has passed. From Fig. 1lb it is obvious that

RT = RD + 7D

Now RD is the hour .angle of star X and & 1is its right ascension; moreover

RT is the hour angle of 7. Therefore

Sidereal time (observer) = hour angle X + right ascension X
S.T.= H+aQ (6)

Now let G on the celestial sphere in Fig. 1b be the zenith of Greenwich;

A A\

GPZ is the longitude of the observer, GPX the hour angle of X from Greenwich
A

and ZPX the hour angle of X from the observer's meridian £ . Since

ng B Zﬁk - Z§b = ng - longitude of observer
obviously:

H.A. of X at Greenwich = H.A. of X at { # longitude of /£
Since this relation is general it also holds for 7. Thus

S.T. at Greenwich = S.T. at £ * longitude at £  (7)

The sign of £ is + when £ is west of Greenwich and - when £ is east of
Greenwich.

A mean solar day is defined as the interval between two successive transits
of a mean sun®* across the observer's meridian and is the aay used in our
system of civil time. A sidereal day has been found to be 3m 56.5%6s
shorter than a mean solar day.

*Te mean sun is a fictitious body which is defined to move in the celestial
equator at a uniform rate around the earth so that it completes a revolution
in the same time as the true sun completes a circuit of the ecliptiec.




In our later work it will often be necessary to campute the sidereal
time at a point on earth at a given local time. It is most convenient to
compute the sidereal time at Greenwich first and then to use equation 7
to find local sidereal time. The American Ephemeris and Nautical AJ:ma.na,c5
for the proper year contains a table called "Universal and Sidereal Times"

which gives the sidereal time for each day of the year for Oh Greenwich time
for that day, i.e. the sidereal time at midnight at Greenwich for the given
day; each day starts at a different sidereal time since the length of a day
in the two systems is different. The given local time is changed into
Universal time by adding the proper correction (+5 hours for E.S.T.). The
sidereal time at Greenwich is next calculated by

= + U.T. + A8
0% = 9, U.T (8)

where GG is the sidereal time at Greenwich, 90 is the sidereal time at Oh
UT taken from Ref. 5 and A8 is the correction required since & solar day is

longer than a sidereal day.

A6 = 3m 56.556s (U.T.h/2kh) = 236.556 (U.T.h/2kh) sec (9)

To find the sidereal time at station A from its value at Greenwich at the
same time we merely use equation 7 and the whole equation then becomes

=6 + - »
eA k uT Ly A8 (10)

vhere 6, is the desired time at A and L, is the longitude of A (west in

this case).
D. Transformation of Coordinates

In our later work it will be necessary to transform between the
altitude - azimuth and the declination - right ascension systems. Iet us
consider the problem of converting fram the right ascension-declination
system to the altitude-azimuth system in direction cosine form. We are
given a and 0 for star X at a given time t and a given latitude ¢. We must
first transform our three direction cosines A, M, V, to the 1, m, n cosines
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of the declination-hour angle system (Fig. 3a),
It is obvious that n= V since the axis is identical for the two systems
and the x, y plane is the same in both cases.

6 = & + H where 6 is sidereal time at the observer
so that the transformation may be seen to teke place as in Fig. 3b
where the rotation of axes in the x,y plane is shown.

1= ANcos (90 - 6) -u sin (90 - 6) = A sin 6 - p cos 6
= Asin (90 - 6) + u cos (90 - 8) = A cos 6 + u sin O (11)
n= V

Next, we must transform from the declination-hour angle system to the altitude-
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